Natural Gas J Virginia Evans Jenny Dooley John Kovacs, M.S.

CAREER PATHS







Virginia Evans Jenny Dooley John Kovacs, м.s.



### Scope and Sequence

| Unit | Торіс                       | Reading<br>context              | Vocabulary                                                                                                                                                                  | Function                            |
|------|-----------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 1    | Natural Gas<br>Jobs 1       | Webpage                         | accountant, engineer, geochemist, geologist, geophysicist,<br>hydrologist, landman, lawyer, marketing executive,<br>salesperson                                             | Introducing<br>yourself             |
| 2    | Natural Gas<br>Jobs 2       | Advertisement                   | company representative, derrick man, driller, drilling<br>contractor, motorman, painter, rig manager, rig welder,<br>roughneck, roustabout                                  | Asking for<br>information           |
| 3    | In the Company              | Company<br>profile              | distribution, downstream, drill, exploration and production<br>(E&P), midstream, sell, storage, survey, transportation,<br>upstream                                         | Expressing opinion                  |
| 4    | In the Natural<br>Gas Field | Magazine<br>article             | cathead, catline, catwalk, cellar, doghouse, double, joint, rabbit, slang, spud in, thief                                                                                   | Asking for<br>clarification         |
| 5    | Work<br>Locations           | Advertisement                   | arctic, coast, desert, island, jungle, offshore, polar, prairie, relocation, remote, tropical, tundra                                                                       | Expressing<br>interest              |
| 6    | Working<br>Conditions       | Employee<br>manual              | arduous, bonus, facility, harsh, hazardous, health plan,<br>hours on/off, manual labor, on leave, perk, salary, shift<br>work, skill                                        | Describing<br>plans or<br>schedules |
| 7    | Weather<br>Conditions       | Article                         | arid, blizzard, extreme, gale-force wind, hail, humid,<br>hurricane, lightning, monsoon, rain, sandstorm, snow,<br>thunderstorm, tornado                                    | Describing<br>degree                |
| 8    | Actions                     | Job<br>description              | assemble, bolt, cap, clear, climb, dig, erect, inspect,<br>locate, plug, provide, repair, screw, supply, tighten                                                            | Deciding on a course of action      |
| 9    | Basic Tools                 | Webpage                         | chainsaw, chisel, drill bit, drill, file, grinder, hacksaw,<br>hammer, pipe wrench, pliers, saw, screwdriver, spanner,<br>vice, welding torch                               | Asking about<br>prices              |
| 10   | Fishing Tools               | Handbook<br>excerpt             | boot basket, fish, fishing string, fishing, impression block,<br>junk mill, overshoot, spear, tapered mill reamer, washpipe,<br>wireline spear                              | Asking for<br>advice                |
| 11   | Numbers                     | Financial<br>report             | add, and, comes to, equal, estimate, fraction, is, less,<br>minus, multiplied by, plus, subtract, times                                                                     | Expressing<br>surprise              |
| 12   | Geometry                    | Advertisement                   | circle, cube, cylinder, diagonal, height, hexagon,<br>horizontal, length, octagon, rectangle, sphere, square,<br>surface area, triangle, vertical, volume, width            | Explaining<br>a process             |
| 13   | Area<br>Measurements        | Textbook<br>excerpt             | acre, centimeter, decimeter, foot, hectare, inch, kilometer, meter, mile, millimeter, yard                                                                                  | Estimating<br>distance              |
| 14   | Natural Gas<br>Measurements | Article                         | British thermal unit (BTU), compressed natural gas (CNG), conversion, cubic feet, energy output, fuel, gasoline gallon equivalent (GGE), kilogram, mass, pound, quad, Therm | Calculating<br>amounts              |
| 15   | Safety<br>Equipment         | Employee<br>handbook<br>excerpt | chemicals, coveralls, earplugs, face shield, fumes,<br>goggles, hard hat, high visibility jacket, require, respirator<br>mask, rubber gloves, steel toe boots               | Giving a<br>reminder                |

## **Table of Contents**







Virginia Evans Jenny Dooley John Kovacs, м.s.



### Scope and Sequence

| Unit | Торіс                                 | Reading<br>context              | Vocabulary                                                                                                                                                                                                                                                 | Function                               |
|------|---------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1    | Parts of a<br>Drilling Rig            | Advertisement                   | bit, blowout preventer, crown block, derrick, drill collar, drill<br>pipe, drill string, engine, hook, kelly, mud hose, mud pump,<br>rotary table, sump pit, swivel, traveling block                                                                       | Listing pros<br>and cons               |
| 2    | Types of<br>Off-shore Rigs            | Article                         | compliant tower, drilling barge, drillship, fixed platform, jack-<br>up rig, seastar platform, semisubmersible rig, spar platform,<br>submersible rig, subsea system, tension- leg platform                                                                | Providing<br>options                   |
| 3    | Parts of an<br>Off-shore Rig          | Advertisement                   | accommodation module, ballast tank, barge, drilling pipe<br>deck, flare stack, helipad, hull, jacket, piles, pontoon,<br>service crane, store area                                                                                                         | Describing<br>possible<br>consequences |
| 4    | Rig Power<br>Systems                  | Brochure                        | air-purging system, console, converter, current, DC bus, eddy<br>current brake system, fuse, induction motor, switchboard, top<br>drive, torque, transformer, ventilator fan, voltage                                                                      | Making<br>comparisons                  |
| 5    | Rig Rotary<br>Systems                 | Handbook<br>excerpt             | bearings, bottomhole assembly (BHA), cement casing,<br>innermost string, kelly bushing, master bushing, riser,<br>stabilizer, stand, sub, threaded connection, tool joint, tubular                                                                         | Troubleshooting                        |
| 6    | Rig Circulation<br>Systems            | Textbook<br>excerpt             | additive, annular space, clay, cutting, detergent, emulsion<br>fluid, invert-emulsion system, mud pit, mud, nozzle, rotary<br>hose, settling pit, shale shaker, spotting fluid, thinner                                                                    | Explaining<br>what is needed           |
| 7    | Rig Hoisting<br>Systems               | Training<br>manual              | braided, cantilever, catshaft, crown block, dead line, drawworks, drum, fast line, mast, node, pulley, sheave, supply reel                                                                                                                                 | Outlining steps<br>in a task           |
| 8    | Drill Bits                            | Trade<br>magazine<br>article    | cone, core bit, diamond, fishtail bit, hybrid, insert bit, mill<br>bit, polycrystalline diamond compact bit, rigid teeth, rotate,<br>steel tooth rotary bit, steel, synthetic, tip, tungsten carbide                                                       | Describing<br>characteristics          |
| 9    | The Drilling<br>Process               | Webpage                         | break up, circulate, cutting, diameter, drill, drilling fluid, generate,<br>lubricate, monitor, onsite, pipe, pressure, pump, wellbore                                                                                                                     | Describing<br>a process                |
| 10   | Drilling<br>Problems                  | Employee<br>handbook<br>excerpt | blowout, corrosion, differential pipe sticking, dogleg,<br>downtime, embrittlement, fatal, kick, lost circulation, shale<br>sloughing, stuck pipe, suspend, wasted                                                                                         | Estimating<br>a time frame             |
| 11   | New Drilling<br>Technology            | Email                           | benefit, coiled tubing drilling, conventional, decibel, deviation<br>drilling, directional drilling, displace, disruptive, multilateral<br>drilling, slant drilling, slimhole drilling, underbalanced drilling                                             | Discussing<br>pros/cons                |
| 12   | Well<br>Completion                    | Brochure                        | abandon, case, cased hole completion, completed, dry<br>hole, flow path, open hole completion, perforate, plug,<br>reservoir, sandscreen, well completion                                                                                                  | Scheduling an appointment              |
| 13   | Well<br>Stimulation                   | Article                         | acidizing, frac fluid, frac job, fracturing, mud cake, paraffin,<br>production, production target, radial fracture, reactivate,<br>reopen, sidetrack drilling, well stimulation                                                                            | Suggesting solutions                   |
| 14   | Natural Gas<br>Processing             | Brochure                        | amine, contactor, cryogenic expansion, desiccant, dry gas,<br>gycol dehydration, glycol, methane, natural gas liquids<br>(NGL), solid-desiccant dehydration, sour gas, sulfur,<br>sweetening, vapor, wet gas                                               | Stating<br>possibilities               |
| 15   | Underground<br>Natural Gas<br>Storage | Pamphlet                        | aquifer, base gas, base load storage, depleted underground<br>gas reservoir, indefinite, liquefied natural gas (LNG), peak load<br>storage, physically unrecoverable gas, pressure differential,<br>recondition, salt cavern, seasonal demand, working gas | Agreeing with<br>an opinion            |

# **Table of Contents**

| Unit 1 – Parts of a Drilling Rig          |
|-------------------------------------------|
| Unit 2 – Types of Off-shore Rigs          |
| Unit 3 – Parts of an Off-shore Rig        |
| Unit 4 – Rig Power Systems                |
| Unit 5 – Rig Rotary Systems               |
| Unit 6 – Rig Circulation Systems          |
| Unit 7 – Rig Hoisting Systems             |
| Unit 8 – Drill Bits                       |
| Unit 9 – The Drilling Process             |
| Unit 10 – Drilling Problems               |
| Unit 11 – New Drilling Technology         |
| Unit 12 – Well Completion                 |
| Unit 13 – Well Stimulation                |
| Unit 14 – Natural Gas Processing          |
| Unit 15 – Underground Natural Gas Storage |
| Glossary                                  |





Virginia Evans Jenny Dooley John Kovacs, м.s.



### Scope and Sequence

| Unit | Торіс                                       | Reading<br>context            | Vocabulary                                                                                                                                                                                                         | Function                             |
|------|---------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1    | Blowouts                                    | Poster                        | blow up, cap, capping stack, evacuate, fatality, influx fluid,<br>kill fluid, kill, reservoir pressure, subsea blowout, surface<br>blowout, underground blowout, well control                                      | Asking for information               |
| 2    | Workovers                                   | Webpage                       | abrasion, bailer, cement squeeze job, corrosion, guy line,<br>holiday, outrigger, perforate, service company, shut in,<br>sidetracking, split, workover rig, workover                                              | Giving an<br>opinion                 |
| 3    | Rig<br>Dismantling                          | Advertisement                 | debris, decommission, detach, dismantle, dispose, mounting, plug, recycle, removal, salvage, scrap, tow, well abandonment                                                                                          | Clarifying<br>information            |
| 4    | Automation                                  | Flyer                         | adapt, advantage, automation, efficiency, operator, productivity, program, remote control, repetitive, robot, technology, unmanned                                                                                 | Disagreeing<br>with an<br>opinion    |
| 5    | Raw Natural Gas                             | Article                       | associated gas, butane, condensate, crude oil, dissolved gas,<br>ethane, free gas, mixture, non-associated gas, pentane,<br>petroleum, propane, raw natural gas, semi-liquid                                       | Asking for/<br>making<br>predictions |
| 6    | Geological<br>Formation<br>Characteristics  | Brochure                      | accumulation, cap rock, cement, deposit, geological trap,<br>kerogen, maturation, mobility, outcrop, permeability, porosity,<br>reservoir rock, sedimentary rock, source rock                                      | Describing<br>similarities           |
| 7    | Natural Gas<br>Traps                        | Textbook<br>excerpt           | angular unconformity, anticline, combination trap, deform,<br>dip-slip, fault, fold, impenetrable, pinch-out, salt dome,<br>stratigraphic trap, strike-slip, structural trap, truncation, uplift                   | Adding<br>information                |
| 8    | Geological<br>Formations                    | Pamphlet                      | basin, coastal plain, continental shelf, continental slope, delta,<br>dune, geographical feature, lagoon, reef, ridge, shoreline,<br>submarine canyon, trench                                                      | Making<br>predictions                |
| 9    | Uses of<br>Natural Gas                      | Brochure                      | ammonia, coal, efficient, electricity, fertilizer, methanol,<br>nonresidential, petrochemical, pollution, power plant,<br>residential, synthetic, textiles, transport fuel                                         | Asking for<br>a suggestion           |
| 10   | Natural Gas and the Environment             | Press<br>release              | acid rain, ash, atmosphere, fossil fuel, greenhouse gas,<br>outweigh, particulate matter, reduce, smog, soot                                                                                                       | Giving a<br>compliment               |
| 11   | Contracts in the<br>Natural Gas<br>Industry | Email                         | adhere, breach of contract, compensation, contract, draw up,<br>expire, lease, lessee, lessor, negotiate, party, remain in force,<br>sue, term                                                                     | Explaining<br>a term                 |
| 12   | Financing in the<br>Natural Gas<br>Industry | Memo                          | account, asset, balance sheet, capital, contingency, depreciate,<br>expenditure, expenses, finance, fluctuate, incur, liability, loss,<br>market price, profit, statement                                          | Asking for<br>clarification          |
| 13   | Marketing in the<br>Natural Gas<br>Industry | Article                       | advertisement, brand awareness, campaign, client, feature,<br>image, media relations, place, press release, price, product,<br>promotion, target group, trade fair                                                 | Offering<br>suggestions              |
| 14   | Liquefied<br>Natural Gas                    | Webpage                       | autorefrigeration, crystallization, dehydrate, domestic product,<br>export, import, insulated, internationally, liquefaction plant, liquefy,<br>regasification plant, regasify, reheat, stranded reservoir, tanker | Providing<br>reassurance             |
| 15   | Tight gas                                   | Employee<br>manual<br>excerpt | accessible, fracture, impermeable, inaccessible, irregular,<br>nature, pressure vacuum, surrounding, sweet spot, tight gas,<br>tight sand, uneconomical, unrecoverable                                             | Expressing confidence                |

# **Table of Contents**

| <b>Unit 1 – Blowouts</b>                        |
|-------------------------------------------------|
| Unit 2 – Workovers                              |
| Unit 3 – Rig Dismantling8                       |
| Unit 4 – Automation                             |
| Unit 5 – Raw Natural Gas 12                     |
| Unit 6 – Geological Formation Characteristics   |
| Unit 7 – Natural Gas Traps                      |
| Unit 8 – Geological Formations                  |
| Unit 9 – Uses of Natural Gas                    |
| Unit 10 – Natural Gas and the Environment       |
| Unit 11 – Contracts in the Natural Gas Industry |
| Unit 12 – Financing in the Natural Gas Industry |
| Unit 13 – Marketing in the Natural Gas Industry |
| Unit 14 – Liquefied Natural Gas                 |
| <b>Unit 15 – Tight Gas</b>                      |
| Glossary                                        |

# Automation

### **Get ready!**

#### Before you read the passage, talk about these questions.

- 1 What are a few advantages of using robots to perform work in natural gas fields?
- 2 Why might someone want to use a remote controlled machine instead of an automated robot?

unmanned

# **ROBOTS** AND NATURAL GAS

A lecture by Dr. Alan Duncan

robot

On May 7, the National Oil and Gas Museum will be hosting a lecture by Dr. Alan Duncan. Duncan, a roboticist, is famous for specializing **robots** for industrial purposes. Duncan will be discussing the potential applications of robots in the natural gas industry. New **technology** has always played an important role in the industry, and **automation** is no different.

According to Duncan, using robots to harvest natural gas has many **advantages**. For instance, robots can be used in places where people cannot. Specialized robots can withstand deep sea pressures and high temperatures. It may even be possible to **program** them to work an entirely **unmanned** rig. Such rigs would be cost-efficient, as they would not require facilities for people.

Duncan also suggests that robots can increase the **productivity** and **efficiency** of existing natural gas fields. Work performed by robots may nicely supplement that done by humans. Robots can quickly and efficiently perform **repetitive** jobs that workers dislike. The same technology could be used even in cases where human intelligence is necessary. Many robots could be **adapted** so that a human **operator** directs them by **remote control**.

# If you are interested in these topics, please attend this lecture. Admission is free.



### Reading

# 2 Read the flyer. Then, mark the following statements as true (T) or false (F).

- **1** \_\_\_ Eventually, robots may allow natural gas rigs to function without people.
- **2** \_\_\_\_ Using robots alongside human workers would improve productivity.
- **3** \_\_\_\_ Robotic technology would be unusable for jobs that require human intelligence.

### Vocabulary

3 Fill in the blanks with the correct words or phrases from the word bank.

#### WOrd BAN

robots advantage remote control operator efficiency technology

- 1 Thanks to the new machinery, the well is now running at peak \_\_\_\_\_.
- 2 The company needs to hire and train a new \_\_\_\_\_\_to run this machine.
- **3** A worker may be able to drill for gas from far away using a(n) \_\_\_\_\_\_.
- 4 As current \_\_\_\_\_ improves, many industries become more productive.
- **5** The main \_\_\_\_\_\_ of automation is that work gets done without paying out salaries.
- 6 Companies can now use \_\_\_\_\_\_ to perform work too dangerous for humans.

# 4 Read the sentence pairs. Choose which word best fits each blank.

- 1 automation / productivity
  - A Some people think that \_\_\_\_\_\_ will eliminate the need for human workers.
  - **B** Upgrading technology often saves money and increases \_\_\_\_\_.

#### 2 programs / adapt

- A The company needs to \_\_\_\_\_\_ its methods to make better use of current technology.
- **B** The inventor \_\_\_\_\_\_ the robots to perform a larger range of functions.

#### 3 unmanned / repetitive

- A We hope to develop a(n) \_\_\_\_\_\_ rig that could be used in hazardous locations.
- **B** Many people dislike work that seems overly

5 Solution Listen and read the flyer again. Why would robots be used to perform repetitive work?

### Listening

- 6 Solution Listen to a conversation between two executives. Then, choose the correct answers.
  - 1 What is the conversation mainly about?
    - A the specific jobs that robots could perform harvesting gas
    - B why the technology they use is inefficient
    - **C** the effects that automation would have on their industry
    - **D** whether workers can become as efficient as robots
  - **2** Why is the man against investing in automation technology?
    - A He thinks it will put human employees out of work.
    - **B** He assumes that automated systems will malfunction.
    - **C** He believes it will be less efficient than using humans.
    - **D** He supposes that workers will have to be retrained to use it.

# Visten again and complete the conversation.

| Executive 2: | I thought the speaker made some<br>very good points <b>1</b> automation.            |
|--------------|-------------------------------------------------------------------------------------|
| Executive 1: | Indeed, the technology seemed <b>2</b>                                              |
| Executive 2: | We should invest in <b>3</b> as soon as possible.                                   |
| Executive 1: | l don't <b>4</b> way.                                                               |
| Executive 2: | Why? Surely, you're not against efficiency.                                         |
| Executive 1: | No, but I don't like the idea of replacing humans <b>5</b>                          |
| Executive 2: | Why would we replace human workers?                                                 |
| Executive 1: | Isn't that the point? Work done by robots would be more efficient, so we'd <b>6</b> |

### Speaking

8 With a partner, act out the roles below based on Task 7. Then, switch roles.

#### **USE LANGUAGE SUCH AS:**

What did you think ...? I don't feel ... / How so?

**Student A:** You are an executive at a natural gas company that has just listened to a lecture on automation. Talk to Student B about:

- what you thought of the lecture
- why you disagree with an idea someone had
- why your reason for disagreeing is valid or invalid

**Student B:** You are an executive at a natural gas company. Talk to Student A about automation.

### Writing

9 Use the flyer and the conversation from Task 8 to write a memo to an executive at a gas company to explain why using automated systems would be a good idea. Include: the pros and cons of automation, how your choice would affect the company's productivity, and what role you think people should have in the process.

# **Weather Conditions**

### **Get ready!**

#### Before you read the passage, talk about these questions.

- 1 What is the weather like in your country?
- 2 What kind of extreme weather conditions are present in your country?

thunderstorm

rain

# Weathering the Rig

#### By Robert Lewiston

It's important to learn about local climate conditions before working on a rig. That way, you are prepared for any weather situation.

- Rain is common in most places. Sometimes rain is accompanied by thunderstorms. Thunderstorms produce lightning and on occasion, hail.
- Snow can create icy conditions, but blizzards are more dangerous. The blowing snow makes it difficult to see.
- In some humid areas, monsoons bring heavy rainstorms and strong winds. Likewise, in arid desert areas, sandstorms are common.
- Some regions are at risk for hurricanes or tornadoes. These two extreme conditions often bring gale force winds. In the event of a hurricane or tornado warning, seek shelter immediately.



### Reading

lightning

#### 2 Read the article. Then, choose the correct answers.

- 1 What is the main idea of the article?
  - A how to prepare for different weather conditions
  - B what types of weather rig workers encounter
  - C where to seek shelter from dangerous storms
  - ${\bf D}$  what conditions cause a storm warning to be issued
- **2** According to the article, which condition occurs in humid areas?
  - A monsoons
- C snow D hurricanes
  - B tornadoes
- 3 What is the danger associated with blizzards?
  - A gale-force winds C blowing sand
  - B lightning strikes
- **D** reduced visibility

#### Vocabulary

3 Match the words and phrases (1-8) with the definitions (A-H).

- 1 \_\_\_\_ hail 5 \_\_\_\_ tornado
- 2 \_\_\_ blizzard
- 6 \_\_\_ lightning
- 3 \_\_\_\_ extreme 7 \_\_\_\_ thunderstorm
- 4 \_\_\_\_ hurricane 8 \_\_\_\_ gale-force wind
- A a flash of electricity in the sky during a storm
- B a very strong wind
- C a dangerous spinning wind storm
- D falling ice balls
- E a strong tropical storm
- **F** a storm with rain and lightning
- G a storm with a lot of snow
- H more serious than normal

## 4 Read the sentence pairs. Choose which word best fits each blank.

- 1 rain / snow
  - A The trees are white with \_\_\_\_\_
  - **B** The \_\_\_\_\_\_ flooded the streets.
- 2 arid / humid
  - A It is quite \_\_\_\_\_ in the jungle.
  - B Deserts are very \_\_\_\_\_ places.

#### 3 monsoon / sandstorm

- A The \_\_\_\_\_ left the village flooded.
- B The \_\_\_\_\_ reduced visibility.
- 5 Solution Listen and read the article again. What is produced by thunderstorms?

#### Listening

- - **1** \_\_\_ The man heard the weather forecast.
  - **2** \_\_\_\_ The woman thinks she heard thunder.
  - **3** \_\_\_ The storm is moving slowly.

# Visten again and complete the conversation.

| Worker 1: | The clouds off to the east look pretty dark.                     |
|-----------|------------------------------------------------------------------|
| Worker 2: | Yeah. The weather forecast said we were in for a <b>1</b> today. |
| Worker 1: | I guess we'll be <b>2</b> in the doghouse soon.                  |
| Worker 2: | Why do you say that?                                             |
| Worker 1: | It's too dangerous to be out on the rig when there's <b>3</b>    |
| Worker 2: | Oh, of course. I thought I just heard <b>4</b>                   |
| Worker 1: | Me, too. The storm's <b>5</b><br>than I thought.                 |
| Worker 2: | We'd better 6 the others.                                        |

#### Speaking

## 8 With a partner, act out the roles below based on Task 7. Then, switch roles.

#### **USE LANGUAGE SUCH AS:**

I guess we'll be hiding out ... / It's too ... We'd better ...

**Student A:** You are a worker on a natural gas rig. Talk to Student B about:

- what the storm clouds look like
- where you will shelter from the storm
- why you need to seek shelter

**Student B:** You are a worker on a natural gas rig. Talk to Student A about the storm that is coming.

#### Writing

9 Use the article and the conversation from Task 8 to fill out the rig weather report.

### **Rig** #456 Weather Report

Weather Conditions: \_\_\_\_

Actions taken by crew: \_\_\_\_

Reason for actions: \_\_\_

### Glossary

fatality [N-COUNT-U1] A fatality is a human death.

fault [N-COUNT-U7] A fault is a break in a rock formation that displaces one side in relation to the other.

feature [N-COUNT -U13] A feature is an important part of a product that makes it unique.

fertilizer [N-COUNT-U9] A fertilizer is a substance added to soil to assist the growth of plants.

finance [N-UNCOUNT-U12] Finance is the management of money by a large company.

fluctuate [V-I-U12] To fluctuate is to rise and fall irregularly.

fold [N-COUNT-U7] A fold is a curve or bend in a layer of rock.

fossil fuel [N-COUNT-U10] A fossil fuel is a fuel like oil or coal that is created by the slow decay of animals and plants that lived a very long time ago.

fracture [N-UNCOUNT-U15] A fracture is a separation in a geological formation.

free gas [N-UNCOUNT-U5] Free gas is natural gas in an oil formation that is not mixed with the oil.

geographical feature [N-COUNT-U8] A geographical feature is a formation on the surface of the Earth.

geological trap [N-COUNT-U6] A geological trap is an area in a rock formation where gas and oil can accumulate.

greenhouse gas [N-COUNT-U10] A greenhouse gas is a type of gas, such as methane or carbon dioxide, that prevents heat from leaving the atmosphere. Greenhouse gases cause the greenhouse effect.

guy line [N-COUNT-U2] A guy line is a thick cord or line that braces a workover rig.

holiday [N-COUNT-U2] A holiday is a break in the cement that connects the casing and the cell wall.

image [N-UNCOUNT-U13] An image is the reputation or opinion of the company and its goods or services.

impenetrable [ADJ-U7] If something is impenetrable, nothing can pass through it.

impermeable [ADJ-U15] If a substance is impermeable, liquid and gas cannot pass through it.

import [V-T-U14] To import something is to buy it from a different country then bring it into your own country.

inaccessible [ADJ-U15] If something is inaccessible, it is difficult or impossible to find or reach.

incur [V-T-U12] To incur is to acquire something unpleasant.

**influx fluid** [N-UNCOUNT-U1] An **influx fluid** is an unwanted fluid that finds its way into a borehole. Influx fluids are the main causes of blowouts.

**insulated** [ADJ-U14] If something is **insulated**, it is covered in order to protect it from factors such as temperature changes. **internationally** [ADV-U14] If natural gas is transported **internationally**, it crosses the border into at least one other country. **irregular** [ADJ-U15] If something is **irregular**, it does not follow a rule or pattern.

kerogen [N-UNCOUNT-U6] Kerogen is the natural content found in source rock.

kill [V-T-U1] To kill a well is to get its pressure back to normal levels.

kill fluid [N-UNCOUNT-U1] Kill fluid is the fluid used to suppress the pressure of a well.

lagoon [N-COUNT-U8] A lagoon is a body of sea water separated from the sea by a reef or sand.

lease [N-COUNT-U11] A lease is a contract to rent land or property for a period of time.

lessee [N-COUNT-U11] A lessee is the member of an agreement that holds a lease.

lessor [N-COUNT-U11] A lessor is a property owner who leases land to another party.

**liability** [N-COUNT-U12] A **liability** is something that a company is responsible for. It is the opposite of an asset.

liquefaction plant [N-COUNT-U14] A liquefaction plant is a type of factory where natural gas is turned into a liquid (LNG).

liquefy [V-T-U14] To liquefy something is to turn it into a liquid or to cause it to turn into a liquid.

**loss** [N-UNCOUNT-U12] **Loss** is the money that a company loses.

market price [N-COUNT-U12] A market price is the price that a product sells for.

maturation [N-UNCOUNT-U6] Maturation is the time it takes for gas and oil to form and move to the reservoir rock.

media relations [N-UNCOUNT-U13] Media relations are a company's communications and interactions with various media (television, press, etc.).



### Natural Gas I

**Career Paths: Natural Gas I** is a new educational resource for petroleum and natural gas industry professionals who want to improve their English communication in a work environment. Incorporating career-specific vocabulary and contexts, each unit offers stepby-step instruction that immerses students in the four key language components: reading, listening, speaking, and writing. **Career Paths: Natural Gas I** addresses topics including jobs in the industry, types of rigs, gas storage and transport, safety procedures, and the drilling process.

The series is organized into three levels of difficulty and offers a minimum of 400 vocabulary terms and phrases. Every unit includes a test of reading comprehension, vocabulary, and listening skills, and leads students through written and oral production.

#### **Included Features:**

- A variety of realistic reading passages
- Career-specific dialogues
- 45 reading and listening comprehension checks
- Over 400 vocabulary terms and phrases
- · Guided speaking and writing exercises
- · Complete glossary of terms and phrases

The Teacher's book contains a full answer key and audio scripts.

The audio CDs contain all recorded material.



