Table of Contents

Topic 5 — Abstract data StrUCTUIeS....c.ciceucreecreeicreeiermerieneerensereenerenerenseressernessenenres 1
5.1 Abstract data StrUCTUIESciiveeiiiiiieniiiiiniiiiiineiiiiineseninnessisienessssresssssssenssssssenssssseens 1
ThINKING FECUISIVEIYcoiiieeeeeeeeeeeee eeae s s nes 1
5.1.1 — 5.1.3 ReCUrSIVE thinNKiNg ...ueeeiiiiii ettt e e et e e e e e e e e e e nnnes 1
ADSEract data STFUCTUIES . ..viiiiieiieee e e e e e e s s e s barraeeeeeas 7
5.1.4 — 5.1.5 TWO dimMeENSiONal @rTays.....cceeecuueieiiiieeeiiiieeesiteeeeeeeeestreeeesereeesneeeesssseeeessneeesnnnns 7

LT I S T O A - Yol < PR 10
5.1.8 = 5.1.9 QUUEUES ..coiiiiiiiieeee ettt e e e e e e e st e s e s e e e e e e s e 16
5.1.10 Arrays as static Stacks and QUEUEScovveeiiieriee ettt 19

[T =T I 1) AU PPPPPPRN 30
5.1.11 Features and characteristics of a dynamic data structurecccceeveveeecieeevcieee e, 30
5.1.12 Operation of lINKEd [ISTSueieiiiiieeciiie ettt e e s e e e e e enae e e e snaeeeas 31
5.1.13 SKECh lINKEA TISTS .eveeueiiiiiieiieestee sttt sttt st e s s 32
TP S ettt e e e e e e e e e e e e e e e et e e et ettt e bt bttt ababaa e e e s 37
5.1.14 Logical Operation Of trEESccccuiieeiiiii ettt e e e e e tee e e st e e e snaaeeeennaeaeas 38
5.1.15 Binary-tree related terminOlOgY.....cccccuiiieciiiie et e e e e 39
5.0.16 TrEE LraVerSal cuueeeeiieeiiee ittt ettt st st s s st e aaeeaeas 41
5.1.17 SKETCh DINArY trEES ..o ceii ittt ettt st sab e b sanes 46

PN o] o] [Tor= Y 4 Lo T s TR 53
5.1.18 Definition of the term dynamic data StrUCTUIec.veveeciieeiiiee e e 53
5.1.19 Comparison of static and dynamic data Structures.........ccccceeveveeeevcieeeeciee e 53
5.1.20 SUItADIE SEIUCLUIES ..euveiiiieeiie ettt sttt st et e sbt e e sabeesanes 54

End of chapter example questions With @aNSWErS...........uuvvviiiiiiiiiiiiieieeeee e eeeeeeeeeeeeeeeeees 56
(03 -1 0= g 0= =T =] Lol T3 67
... 68

6.1 ReSoUrce ManNABEMENT.....cccieuiieiiieiireiieeiieeitntretrestesssnseraserassssssesssasssnsssnssesssasssnssrnns 68
SYSTEIM FESOUICES ..eviiiiiiee ittt ettt e et e e et e e e et s e aaa e e e et e eeaaa s eeaaaeeetasaaasnseeannnsaees 68
6.1.1 Identification Of CritiCal rESOUMCES.....uiiviiiiiiiieetee e 68
6.1.2 AVailability Of rESOUICES ...iiceeiee ettt e s e e et e e e stae e e s enaae e e snaeeeens 73
6.1.3 LIMItation Of FESOUIMCES ..oiuviieiiiiiieetie ettt sttt st be e e saeeesanes 76
6.1.4 Problems with inSUffiCiENnt reSOUICESoovuiiiriiiiiecieee e 77
Role of the Operating SYStEM ... e e e e e e e e e e e e e e e e e eeeeaeeees 79
6.1.5 Role of the Operating SYStEM (OS) . uccccuiiiieciieeceiiie ettt e e e sareee s 79
6.1.6 —6.1.7 OS resource management tEChNIQUESccccviiiveciereiiieee e e sree e sree e 82
6.1.8 Dedicated OS fOr @ dEVICE ...ccuii ittt bbb 85
6.1.9 OS and complexity NidiNg........oeeiciieeiiiie e e e e e e eree e 87

End of chapter example questions With @aNSWErS...........uuvuiiuiiiiiiiiiiiieieieee e eeeeeeeeeeeeeeeeees 89
(03 -1] 0= g 0= =T =] Lol Y-S 94
TOPIC 7 — CONLIOL.....ceeieeecreecreecreecreeereeermereenestenseranseranseranserasserassesnsssensssensssnnes 95
780 0o 1o T N 95
Centralized CONtrol SYSEEMS ...ccciiiiiieeeeeeeeeeee s eeeeeeeeeesesessarararaaaaas 95

7.1.1 A range Of CONTIOl SYSTEMS.....uiiiiiiieecciie ettt e et e et e e et e e e st e e essea e e e snsaeeesanaeeean 95

7.1.2 The uses of microprocessors and sensor input in control systems..........ccccvvvvveeeeeereennns 101

7.1.3 Different input devices for the collection of data in specified situations 103
7.1.4 The relationship between a sensor, the processor and an output transducer 104
7.1.5 The role of feedback in @ control SYStemMceeeviiiiiiiiiiiiiiec e 106
7.1.6 Social impacts and ethical considerations associated with the use of embedded systems
.. 106
DiStribULEd SYSTEMS ..eiiiiii it e e e e e e e e e e nae b e e a e e e e e aaeeeaaans 109
7.1.7 Comparison of centrally controlled systems with distributed systemscccccece. 109
7.1.8 The role of autonomous agents acting within a larger systemccccccceeveiviieeneeennnnn, 111
End of chapter example questions With anNSWers..........ccccccviiiiieiie e, 115
Chapter REfErENCES ...cccuiiiiieiiiiiieiiiiirciertrecereenneereenseeeseenssesseenssesssenssessesnssssssnnsnnns 120

LI Lo T I =«

D.4 Advanced program development.........cccceeuiiiieeiiiiiieniceiienieenirnsieeneresseesenessessennnns
D.4.1 The tEIM “TECUISION" ..iii ittt ettt ettt e ettt e e et e e s sabte e e s e bt e e s sabeeessabeaeesrabeeeeens

D.4.2 Application of recursive algorithmsoooiiiiiiiiii e e
D.4.3 Construction of algorithms that use recursionccccceeee e,
D.4.4 Trace of recursive algorithmsccceecviiveeeiieeiciiiieeeeee,

D.4.5 Define the term object reference
D.4.6 Construct algorithms that use reference mechanisms.........cccccceeeiieeiciiiieee e,
D.4.7 Identify the features of the Abstract Data Type (ADT) list.....cccceeeivieeeeciiiiieiieee e,
D.4.8 Describe the applications of lists
D.4.9 Construct algorithms using a static implementation of a list

D.4.10 Construct list algorithms using object referencescccoeccvvieeieiiiieicciiieec e,

D.4.11 Construct algorithms using the standard library collections included in JETS............. 161
D.4.12 Trace algorithms using the implementations described in assessment statements

DR T B I 3t I PP UPPUPPPPN 167
D.4.13 Explain the advantages of using library collectionscccccvvvieeiiiiicciiiieeee s 171
D.4.14 Outline the features of ADT’s stack, queue and binary tree..........ccccccevveeveeeiieiicnnnens 173
D.4.15 Explain the importance of style and naming conventions in codeccccceeeeviivnnnees 173
End of chapter example questions With anNSWers..........cccccciiiiiiiiiei e, 177
Chapter REfErENCES ...cccuiiiiieiiiiiiiiiiireiereteecereeeaeereensseeseensssseenssesssenssessssnssessennsnnns 284
... 285
A.1 Stack implementation using the ArrayList class......ccccouvviiiiiiiiieneiiniieee e, 285

A.2 Queue implementation using the ArrayList classccccoocvviivriieeeeinciiee e, 287

Chapter 1
TOPIC 5 — ABSTRACT DATA STRUCTURES

Most IB compatible pseudocode examples of this book have been tested using the EZ

Pcode practice tool found at:
https://dl.dropboxusercontent.com/u/275979/ibcomp/pseduocode/pcode.html
This excellent tool was developed by Mr. Dave Mulkey. The authors wish to express

-
——— e ————

their gratitude to the developer of this valuable educational resource.

e —————

e

Topic 5 — Abstract data structures!?
5.1 Abstract data structures

Thinking recursively

5.1.1 - 5.1.3 Recursive thinking
Exit skills. Students should be able to':

Identify a situation that requires the use of recursive thinking. Identify recursive
thinking in a specified problem solution. Trace a recursive algorithm to express a
solution to a problem.

Recursion is when a method calls itself until some
terminating condition is met. This is accomplished without
any specific repetition construct, such as a while or a for
loop. Recursion follows one of the basic problem solving
techniques, which is to break down the problem at hand into
smaller subtasks. Any algorithm that may be presented in a

recursive manner can also be presented in an iterative
manner and vice versa. In most cases, recursive algorithms
are considered as harder to code.

Towers of Hanoi?

In order to gain a firm understanding of the basic idea, as well

as the application of recursion, the following example
Image 5.1: The Towers of Hanoi game

! International Baccalaureate Organization. (2012). IBDP Computer Science Guide.
2 Towers of Hanoi. (2015, November 17). In Wikipedia, The Free Encyclopedia. Retrieved 14:03,
November 17, 2014, from https://en.wikipedia.org/wiki/Tower_of Hanoi

presents what is known as the Towers of Hanoi. The Towers of Hanoi is a puzzle that

consists of three rods and a number of discs of different sizes, which can slide onto any rod.
The puzzle starts with the discs in a neat stack in ascending order of size on the first rod, the
smallest at the top, as shown in Image 5.1. The goal of the puzzle is to move the stack of
discs from the first rod to the third rod, obeying the following rules:

e A disc may not be placed on top of a smaller one.

e Only one disc may move on every move.

e A disc may not be moved if it is not the top disc on a stack.
e For temporary storage, the third rod may be used.

There are various approaches that can solve the Towers of Hanoi problem, including both
iterative and recursive solutions. We will be concentrating on a recursive solution, by
recognizing that this puzzle may be solved by breaking it into smaller and smaller similar
puzzles, until a solution is reached.

Assume that the rods are named A, B and C and that n represents the number of discs (with
1 being the smallest, at the top, and n being the largest, at the bottom). A recursive solution
to the Tower of Hanoi problem, in order to move n discs from rod A to rod C could be the
following:

e Move n-1 discs from rod A to rod B, leaving disc n
Step in rod A.

e Move disc n from rod A to rod C.
@ e Move n-1 discs from rod B to rod C.

The algorithm above is recursive as it is applied again and

again in both the first and the third steps for n-1 discs. At
some point n will be equal to 1 and a single disc will be
moved from rod A to rod C, resulting in an algorithm with
finite number of steps.

A working example of this algorithm is examined. Figure 5.1
represents the three rods (named A, B and C) as well as
three discs, stacked on top of each other in rod A. The
algorithm goes as follows:

Move green disc from A to C.
Move orange disk from A to B.
Move green disk from Cto B
Move grey disk from Ato C
Move green disk from B to A
Move orange disk from B to C

No v ks~ wNe

Move green disc from Ato C

Figure 5.1: Steps of the game

The recursive algorithm for the solution of the Towers of
Hanoi problem is also presented in Figure 5.2. Pay
attention to the fact that a sub-procedure called moveDiscs is used. moveDiscs takes four

arguments. The number of the discs (n), the rod the discs are to be moved from (from), the

rod to which the discs are to be moved to (dest), as well as the rod that will not be used
(aux). The arguments of the moveDiscs sub-procedure (that is, n, from, aux, dest) should not
be confused with the name of the rods used previously (A, B and C).

Start miscs(n, from, dest, aux)

Declare n
true
Input
n
moveDiscs(n-1, from, dest, aux)
moveDiscs(n, A, B, C) i
4 / Move disk n from from to dest /
v
Stop i
moveDiscs(n-1, aux, from, to)
Move disk 1
Return
from from to
dest
Figure 5.2: The Towers of Hanoi flowchart
Snowflakes

The Koch snowflake is a mathematical curve which is based on the Koch curve, developed by
the Swedish mathematician Helge von Koch.

This mathematical curve can be constructed by starting with an equilateral triangle. Using
recursion each line segment changes using the following steps:

divide the initial line segment into three sub-segments of the same length.
draw an outward pointing equilateral triangle that has the middle segment from
step (1) as its base.

3. delete the line segment that is the base of the triangle from previous step.

The following algorithm expressed in IB pseudocode creates a 400 by 461 window and draws
a Koch fractal:

//Three curves that shape an equilateral triangle
//pen originally is heading at 90 degrees (x axis)
//the method pen.goForward is supposed to control
//a pen that plots line segments on the screen
//the method pen.turnlLeft is supposed to change the original
//heading of the pen counter clockwise by the degrees given as a parameter.
//the method pen.turnRight is supposed to change the original
//heading of the pen clockwise by the degrees given as a parameter.
method Draw_Koch_ fractal (N)
width = 400//width of the window
height = 2*width/Math.sqrt(3)//calculation of the height of the window
size = width/Math.pow (3.0, N)//size of each drawing step
initial pen position = pen.setposition(0, width*Math.sqrt(3)/2, 0)
//calculation of the initial pen position (0,114)
pen.setWindowSize (width, height)//initialization of the window
koch fractal(N)//call of the Koch fractal method
pen.turnrRight (120) //turn right by 120 degrees
koch fractal(N)//call of the Koch fractal method
pen. turnRight (120)
koch_ fractal (N)
end method

method koch_fractal (n)
if (n == 0) then
pen.goForward (size)
else
koch fractal(n-1)
pen. turnLeft (60)
koch_ fractal (n-1)
pen. turnRight (120)
koch_fractal (n-1)
pen. turnLeft (60)
koch_fractal (n-1)
end if
end method
output Draw_Koch fractal (N)

The following table depicts the snowflakes produced by the above algorithm for N=0 to 5:

i g
A8 T 7
N _ __J,.fx__f {K__J,ﬁ.‘.__
/ X .-": N\ s
Y .'(r "\.__ __J" I;'}
\ / / \ / \
Y il
/ i s
N\ / N L
b .-“.Jl "'\ / "_,.I \] {" .-.\u'fr
i / \"' "f : e
LY hV 4 Xt
N=0 N=1 N=2

ke 4 M
AT Tad L A
1 1
A :
v v
}} {*.r
A A,
£, '
9 <
i T

E_rﬁf T s ﬁ?mz

? -

urb':' g
[

The following program uses recursion to create the method addIntUpTo (n) for n>0 that
will add all numbers from and including n down to 1. For example, if addIntUpTo (4) is

Table 5.1: Various fractals

called, the result would be: 4 + 3 + 2 + 1 = 10

method addIntUpTo (n)
if (n == 1) then
return 1
else

return n + addIntUpTo (n-1)

end if
end method

This method is a recursive function since it calls itself. On each call, the argument is reduced
by one (every time addIntUpTo is called, its argument is n-1). n-1 calls are made until the

terminating conditionn =

1is met.

What is going to be the output of the following algorithm?

method foo(n)
if (n <= 1) then
return 1
else

return foo(n-1) + foo(n-2)

end if
end method

output foo (5)

Answer: 8

What is going to be the output of the following algorithm?

method foo(n, m)

if (n <= 1) OR (m <= 1) then

return 2

else

return foo(n-1, m) + foo(n, m-2)
end if
end method

output foo(5,4)

Answer: 30

What is going to be the output of the following algorithm?

method foo(n, m)
output "value of n=", n, "value of m =", m
if (n <= 1) OR (m<=1l) then
return 2
else
return foo(n-1, m-n)+foo(n, m-2)
end if
end method

output "Output is", foo(3,2)

Answer:

value of n= 3 value of m = 2

value of n= 2 value of m = -1
value of n= 3 value of m = 0

Output is 4

What is going to be the output of the following algorithm?

method Foo(X,Y)
if X < Y then
return Foo (X+1,Y-2)
else if X = Y then
return 2*Foo (X+2,Y-3)-3
else
return 2*X+3*Y
end if
end method
output "Output is", Foo(3,12)

Answer:

Output is 47

Abstract data structures

5.1.4 - 5.1.5 Two dimensional arrays

Exit skills. Students should be able to':

Describe the characteristics of two-dimensional arrays.
Construct algorithms using two-dimensional arrays.

A one-dimensional array should be considered as a single line of elements. However, in
many cases, data comes in the form of a data table. Each element in a 2D array must be of
the same type, either a primitive or object type. Take, for example, five exam scores of a
student, as a data record, and represent it as a row of information. The data records for ten
students, would then be a table of 10 rows. Below is the visualization of this collection of

data:
'/ __ \\
: A lot of information and examples of two-dimensional arrays can be found in the book |
| Core Computer Science for the IB Diploma Program?. 1
N e e e e e e e L /l
Index O Index 1 Index 2 Index 4
Student 1 Index 0 98 68 65 67
Student 2 Index 1 77 77 88 90
Student 10 Index 9 88 86 90 81

Table 5.2: Two dimensional array Scores

2D arrays are indexed by two subscripts. The indices must be integers. The first one refers to
the row, while the second to the column. Scores[1] [1] refers to Exam 2 of the second
student. Its value is 77.

Programming Example 6: Two dimensional array (exam scores).

//This program will use the array Scores which is a 2D ARRAY.
//1t will print the contents of the array.
//5 students with 5 exams each
Scores =
[[98,68,65,73,67],
[77,77,88,78,90],
[53,63,74,85,72],
[77,77,68,78,91],
[88,86,90,56,81]]
STUDENT = 0
EXAM = 0
loop STUDENT from O to 4
output STUDENT +1, "Student"
loop EXAM from O to 4
output "----", "Exam ", EXAM+1l, Scores[STUDENT] [EXAM]
end loop
end loop

OUTPUT

1 Student

---- Exam 1 98
---- Exam 2 68
---- Exam 3 65
---- Exam 4 73
---- Exam 5 67
2 Student

--—-- Exam 1 77
--—-- Exam 2 77
---- Exam 3 88
---- Exam 4 78
---- Exam 5 90
3 Student

---- Exam 1 53
---- Exam 2 63
---- Exam 3 74
---- Exam 4 85
---- Exam 5 72
4 Student

--—-- Exam 1 77
--—-- Exam 2 77
---- Exam 3 68
---- Exam 4 78
---- Exam 5 91
5 Student

---- Exam 1 88
---- Exam 2 86
---- Exam 3 90
---- Exam 4 56
---- Exam 5 81
Scores =

[[98,68,65,73,67],
[77,77,88,78,90],
[53,65,74,85,72],
[77,77,68,78,91],
[88,86,90,56,81]]
STUDENT = 0
EXAM = 0
loop STUDENT from 0O to 4
output STUDENT +1, "Student"
loop EXAM from O to 4
if (Scores[STUDENT] [EXAM] mod 10 = 5) then
output "----", "Exam ", EXAM+1l, Scores[STUDENT] [EXAM]
end if
end loop
end loop

OUTPUT

1 Student
---- Exam 3 65
2 Student
3 Student
---- Exam 2 65
---- Exam 4 85
4 Student
5 Student

Programming Example 8: Finds and outputs the number of “8”s each score contains. It also
outputs the total number of appearance of digit “8”.

Scores =
[[98,68,65,73,67],
[77,77,88,78,90],
[77,77,88,78,91],
[88,86,90,56,81]]
STUDENT = 0
EXAM = 0
TCOUNTER = 0
loop STUDENT from O to 3
output STUDENT +1, "Student"
loop EXAM from O to 4
X=1
COUNTER = 0
X = Scores|[STUDENT] [EXAM]
loop while X>0
if X mod 10 = 8 then
COUNTER = COUNTER + 1
TCOUNTER = TCOUNTER +1
end if
X = div (X, 10)
end while
output "----", "The grade of exam ", EXAM+1l, "has",
COUNTER, "eight(s)"
end loop
end loop
output " A total of ", TCOUNTER, "eights appear in all grades"

OUTPUT:

1 Student

---- The grade of exam 1 has 1 eight(s)
---- The grade of exam 2 has 1 eight(s)
---- The grade of exam 3 has 0 eight(s)
---- The grade of exam 4 has 0 eight(s)
---- The grade of exam 5 has 0 eight(s)
2 Student

---- The grade of exam 1 has 0 eight(s)
---- The grade of exam 2 has 0 eight(s)
---- The grade of exam 3 has 2 eight(s)
---- The grade of exam 4 has 1 eight(s)
---- The grade of exam 5 has 0 eight(s)

3 Student
---- The grade of exam 1 has 0 eight(s)

---- The grade of exam 2 has 0 eight(s)
---- The grade of exam 3 has 2 eight(s)
---- The grade of exam 4 has 1 eight(s)
---- The grade of exam 5 has 0 eight(s)
4 Student

---- The grade of exam 1 has 2 eight(s)
---- The grade of exam 2 has 1 eight(s)
---- The grade of exam 3 has 0 eight(s)
---- The grade of exam 4 has 0 eight(s)
---- The grade of exam 5 has 1 eight(s)

A total of 12 eights appear in all grades

5.1.6 - 5.1.7 Stacks

Exit skills. Students should be able to*:

Describe the characteristics and applications of a stack.
Construct algorithms using the access methods of a stack.
Trace algorithms that use stacks.

Characteristics

A stack stores a set of elements in a particular order and allows access only to the last item
inserted. Items are retrieved in the reverse order in which they are inserted. The stack is a
Last-In, First-Out data (LIFO) structure. The elements of a stack may be numbers, Boolean
values, characters, objects, arrays, strings, etc.

Stacks utilize three methods:

1. push(). Pushes anitem onto a stack.
pop () . Removes and returns the last item entered in the stack.

3. isEmpty (). Tests if a stack is empty. It will return true if stack contains no
elements.

Suppose we want to add the elements 5, 4, 3 in a stack named Numbers. The following
diagram explains this situation:

Stack is initially empty.

Numbers .push (5)
5 was added to the stack.

5

Numbers .push (4)
a 4 was added to the stack
5

Numbers . push (3)
3 was added to the stack

Suppose we want to remove all the elements from the stack.

The following example presents this situation:

Applications

e The back button of a web browser uses a stack to function. Every time a URL is
visited it is stored on a stack. The last address that was visited is on the top of the
stack. The first address that was visited during the current web session is on the
bottom of the stack. If one selects the Back button, he/she begins to visit the

Stack contains 3 numbers.

X = Numbers.pop ()
Top element was removed from the stack. This element was
the number 3. 3 was assigned to variable X

X = Numbers.pop ()
Top element was removed from the stack. This element was
the number 4. 4 was assigned to variable X

X = Numbers.pop ()
Top element was removed from the stack. This element was
the number 5. 5 was assigned to variable X. Stack is empty.

previous pages they have visited in reverse order.

e Microprocessors usually use a stack to handle methods. Suppose a method, A, which
returns an integer, with parameters b and c of type integer, is called. In Java this

would look like this:

int ¢ = A(a, b);

The method header would look like this:

public static int A(int b, int c)

The method body should look like this:

When A is called, its return address, as well as b and ¢ are pushed onto the microprocessors
stack. When the method returns r, the return address and the parameters (arguments) are
popped off the stack. The overall process is more complicated, but further explanation is

{method body
return r}

beyond the scope of this book.

e Recursive methods also utilize the system stack to keep track of each recursive call.
This block of memory is used to store temporary data required for program
execution. The calls are nested inside each other. Initially, all recursive calls are
unfolded and pushed onto the stack, until the base case is reached and then all
recursive calls are popped from the stack, when necessary. In the following example
the left-hand code fragment will return 4. The right-hand code fragment will
generate a run time error because the recursive program will never reach the

terminating condition.

public class Rec_Demo

{

public static int question(int n)

{

if (n <= 0)
return -2;
else

return (question(n-100)+3);
}

public static void main (String][]
a)

public class Rec_Demo

{

public static int question(int n)

{

if (n <= 0)
return -2;
else

return (question(n+100)+3) ;
}

public static void main (String[]
a)

{ {
int 1 = question(111); int 1 = question(111);
System.out.println("1= "+1) ; System.out.println("1= " + 1);
} }
} }
OUTPUT OUTPUT
1=4 java.lang.StackOverflowError:null
Algorithms

Programming Example 9: Use of a stack, an array and a collection.

Reverse and store

/ /====

// This algorithm uses an array, a stack and a collection.
// It reads names from the array, reverses them,
// using the stack, and stores the contents of the stack

// inside the collection.

//

NAMES = ["Kostas", "Markos",
NAMES C = new Collection()
STACK_NAMES = new Stack()
I=0

loop I from 0 to 4
STACK_NAMES.push (NAMES[I])
end loop

"Anna n ,

"Mary" , "Takis"]

output "Add names in the collection:"

output "

loop while NOT (STACK NAMES.isEmpty())

NAME = STACK NAMES.pop ()

NAMES C.addItem (NAME)

output NAME,
end loop

"was entered in the collection"

output ""
output "Names stored in the collection:"

output " "
loop while NAMES C.hasNext ()

output NAMES C.getNext ()
end loop

OUTPUT

Add names in the collection:

Takis was entered in the collection
Mary was entered in the collection
Anna was entered in the collection
Markos was entered in the collection
Kostas was entered in the collection

Names stored in the collection:

Takis
Mary
Anna
Markos
Kostas

The following program uses 4 stacks to solve the Towers of Hanoi problem:

//Declaration and initialization of variables
SPa = new Stack() //a new stack
SPb = new Stack() //a new stack
SPc = new Stack() //a new stack

SPd = new Stack() //a new stack

daa = new Array() //auxiliary array to use in display method
dbb = new Array() //auxiliary array to use in display method
dcc = new Array() //auxiliary array to use in display method
PEGS = [SPa, SPb, SPc, SPd] //an array of four stacks

I=0

a=1

b=2

c =3

t=0

n=20

m=20

da = ""

db = ""

dc = nn

NUM = 5 //the number of disks

fl =" n

f2 =" n

f3 =" n

TowersofHanoi (NUM) //the number of disks

//The following method is the starting point
//of the program
method TowersofHanoi (n)
loop I from 0 to n-1
m = n-I
PEGS[1] .push (m)
end loop
display ()
move(n,1,2,3)
end method

//This is a recursive method used to solve the problem
method move(n, a, b, c)
if n>0 then
move (n-1, a, c, b)
t = PEGS[a] .pop()
PEGS[c] .push (t)
display ()
move (n-1, b, a, c)
end if
end method

//The following method is used to visualize the
//pegs and the disks. Three auxiliary arrays are
//used so as to display the contents of each stack.
method display()

output ""

output " | A | B | C |"

loop I from 0 to NUM-1

daa[I] = PEGS[1l].pop()//put the elements of the stack to an array
dbb[I] = PEGS[2].pop()//put the elements of the stack to an array
dcc[I] = PEGS[3].pop()//put the elements of the stack to an array
end loop

loop I from 0 to NUM-1

da = daa[I]
db = dbb[I]
dc = decc[I]
f1 = String(da)//covert to string
if £f1 == "null" then
f1=" -
end if
f2 = String(db) //covert to string
if £2 == "null" then
f2="-"
end if
£3 = String(dc) //covert to string
if £3 == "null" then
f3=" -
end if
output " | " , fl , " " , f2 , n n , f3 , n l n
end loop

loop I from 0 to NUM-1
m = NUM-1-I
PEGS[1] .push(daa[m]) //put the elements of the array daa back to the stack
PEGS[2] .push(dbb[m]) //put the elements of the array dbb back to the stack
PEGS[3] .push(dcc[m]) //put the elements of the array dcc back to the stack
end loop
end method

FORMATED OUTPUT

12

16

20

M <

11

15

19

NS |

10

14

18

CE=HNMmIIn

13

17

[2 To I I B | n O AN Mm< 0

[+ N B | (3] Mmoo

g =HNM | & 11
< o] [\

o~ o~ o
[2T I A B | < 0 OaNmgSn |
Mme <1 [+ I I N I I |
- B T | &= 1 111

o ~ —

o o~ (a2}
oNwn | < 0 Omgsin ||
Mme <1 Mmoo
(= 0 T I R | ™ &= 1 1 1 1

~N o o

(o] (o] o
O NI | n Omgsin ||
m< 11 Mo
[= s T I I | N ™M & 11

— LN ()]

(o] (o] o

5.1.8 - 5.1.9 Queues

Exit skills. Students should be able to:

Describe the characteristics and applications of queues.

Construct algorithms using the access methods of queues.
Trace algorithms that use queues.

Characteristics of queues

A queue stores a set of elements in a particular order and allows access only to the first item
inserted. Items are retrieved in the order in which they are inserted. The queue is a First-In,
First-Out (FIFO) data structure. The elements of a queue may be numbers, Boolean values,
characters, objects, arrays, etc.

Queues utilize three methods:

1. enqueue (). Puts anitem into the end of the queue.
dequeue (). Removes and returns the first item entered in the queue.

3. isEmpty (). Tests if a queue is empty. It will return true if queue contains no
elements.

Suppose we want to add the elements 5, 4 and 3 in a queue named Numbers.

The following example presents this situation:

Queue initially empty

Numbers . enqueue (5)

5 was added to the queue
Numbers .enqueue (4)
4 was added to the queue
Numbers .enqueue (3)
3 was added to the queue

£

B

4]

[
=l

Suppose we want to remove all the elements from the queue.

The following example presents this situation:

Queue contains 3 numbers

]
]

X = Numbers.dequeue ()

First element was removed from the queue. This element
was the number 5. 5 was assigned to variable X.

X = Numbers.dequeue ()

First element was removed from the queue. This element
was the number 4. 4 was assigned to variable X.

X = Numbers.dequeue ()

First element was removed from the queue. This element
was the number 3. 3 was assigned to variable X. Queue is
empty.

e
|]=

Applications of queues

e Queues are used to model physical queues, such as people waiting in line at a
supermarket checkout.

e The print queue displays the documents that are waiting to be printed. These
documents will follow the first-send first-print policy.

o When sending data over the internet, various data packets wait in a queue to be
sent.

e Aserver usually serves various requests. In most cases these requests are stored in a
gueue. The first-come first-served request procedure is followed.

Algorithms that use queues

Programming Example 11: Use of a queue and arrays.

A small school uses two buses to transport students. As soon as the buses arrive, all students
enter a queue and a teacher uses a registry to check which students are present. The
following algorithm uses two arrays to represent the school buses, a queue to represent the
queue, and an array to represent the registry:

BUS1 = ["Roger", "John", "Nikos", "Marion", "Hellen"]

BUS2 = ["Nora", "Bill", "Eliza", "Takis", "Alex"]

REGISTRY = ["Alex", "John", "Elina", "Nikos", "Leo", "Marion",
"Hellen", "Nora", "Bill", "Eliza", "Takis", "Roger"]

STUDENTS = new Queue () //Queue for Students

A=""
I=0
FOUND = 1

//copy students from BUS1
loop I from O to 4

STUDENTS . enqueue (BUS1[I])
end loop

//copy students from BUS2
loop I from O to 4

STUDENTS . enqueue (BUS2[I])
end loop

loop while NOT (STUDENTS.isEmpty ())
A = STUDENTS.dequeue ()
loop I from 0 to 12
if REGISTRY[I] = A then
FOUND = 1
end if
end loop
if FOUND = 1 then
output A, "is not absent"
end if
end loop

OUTPUT

Roger is not absent
John is not absent
Nikos is not absent
Marion is not absent
Hellen is not absent
Nora is not absent
Bill is not absent
Eliza is not absent
Takis is not absent
Alex is not absent

Programming Example 12: Use of queues, arrays and a collection.

A supermarket has two express cashiers. The array CASHIER1 contains the customers that
enter the queue CUSTOMER1, while the array CASHIER2 contains the customers that enter
the queue CUSTOMER2. The TIME collection stores the names of the customers that waited
more than 60 secs, counting from the moment that their turn to be served had come. The
supermarket administration wishes to minimize the waiting for these two express cashiers. A
guestionnaire is sent by email, from the administration of the supermarket, to the
customers stored in the collection TIME to understand why this situation took place. A
message that outputs the overall slower express cashier is output at the end of the day.

CASHIER1 ["Roger", "John", "Nikos", "Marion"]
CASHIER2 = ["Nora", "Bill", "Eliza", "Takis"]
CUSTOMER1 = new Queue()

CUSTOMER2 = new Queue ()

TIME = new Collection()

A= nn
B=20
Cl=0
cC2 =0
I=0
D1 =0
D2 =0
TOT B = 0
TOT_C = 0
FOUND = 1

loop I from 0 to 3
CUSTOMERL1 . enqueue (CASHIER1[I])
end loop

loop I from 0 to 3
CUSTOMER2 . enqueue (CASHIER2[I])
end loop

loop while NOT (CUSTOMERI1.isEmpty ())
D1 = (CUSTOMERI1.dequeue())
Cl = Math.floor((Math.random() * 100) + 1)

if C1>60 then //only customers waiting more than 60 secs enter the

collection
TIME.addItem(D1l)
end if
TOT B = TOT B + C1
end loop

loop while NOT (CUSTOMERZ2.isEmpty ())
D2 = (CUSTOMER2.dequeue())
C2 = Math.floor((Math.random() * 100) + 1)
if C2>60 then
TIME.addItem(D2)
end if
TOT_C = TOT_C + C2
end loop

TIME.resetNext ()

loop while TIME.hasNext ()
output TIME.getNext ()

end loop

if TOT_B > TOT_C then//outputs the slower cashier
output "CASHIER1l is slower"

else
output "CASHIER2 is slower"

end if

A POSSIBLE OUTPUT

Roger
John
Bill
Eliza
CASHIER2 is slower

5.1.10 Arrays as static stacks and queues

Exit skills. Students should be able to':

Explain push and pop operations, and test on empty/full stack.
Explain enqueue and dequeue operations, and test on empty/full queue.

Algorithms to implement stacks using an array

The program starts with an array of 10 elements. The methods used are the following:

push ()

this method is used to add elements in the stack. Inserting an element increments high by 1
and adds the element in this array position. The high is incremented before the insertion of
the new item takes place.

pop ()
this method returns the value of the top element and then decrements high. It serves to

remove the top element from the stack. The item removed actually remains in the array but

is inaccessible.

isempty ()

it is based on the high variable. It returns true (1) if the stack is empty.

isfull()

it is based on the high variable. It returns true (1) if the stack is full.

size ()

it is based on the high variable. It returns the number of elements stored in the stack.

s _array = new Array()

s_array = [0,0,0,0,0,0,0,0,0,0]
maxsize = 10

high = -1
n=0

pop ()
push (1)
push (2)
push (7)
push (8)
pop ()

push (9)
push (10)
push (9)
push (33)
push (29)
push (11)
push (49)
push (10)

output "----—---—- "
output "high =
output "---——--—-—-——-
output "s array contains
output "--------—- "
output "size of stack = ", size()

:", s_array

output
“[I11171111 7
output "stack contents display and
removal"
output
“[I111711777777777777777717777777777"
loop while isempty() = O

n = pop()

output n
end loop

OUTPUT:
Message: stack is empty
Message: stack is full

s_array contains :
1,2,7,9,10,9,33,29,11,49

size of stack = 10
T
stack contents display and removal
T
49

11

29

33

9

10

9

7

2

1

T

Explanation:

This algorithm uses the s_array to
implement a stack The methods used
arepush (), pop(), isempty (),
isfull () and size() .

When this algorithm starts an array of

output
[0 7770777077777777777777"

method push (n)
if (isfull() == 1)
output "Message:
else
high = high + 1
s_arrayl[high] = n
end if
end method

then
stack is full"

method pop ()
if (isempty() == 1) then
output '"Message: stack is empty"
else
high = high - 1
return s_array[high+1]
end if
end method

method isempty ()
if (high == -1) then
return 1
else
return 0
end if
end method

method isfull ()
if (high == maxsize-1) then
return 1
else
return 0
end if
end method

method size()
return high+l
end method

ten elements is created.

maxsize variable is used to hold the
maximum stack size, high variable is
used to point the array position that is
the top of the stack.

The first pop () instruction generates a
“Message: stack is empty” output.

push (1), push(2), push(7),
push (8) instructions add four
elements in the stack.

pop () instruction removes 1 from the
stack.

push (9), push(10), push (9),
push (33), push(29), push (11),
push (49) instructions add 7 elements
in the stack. The stack is now full.

push (10) instruction causes
“Message: stack is full “ message to be
displayed.

Instruction “output "high =
", high”

prints the number 9 which is the array
position used to point the end of the
queue.

Instruction “output s_array
contains :", s_array” outputs
the contents of the actual array used.
The numbers 1,2,7,9,10,9,33,29,11,49
are printed.

The size of stack is 10

After a “stack contents display and
removal” message a loop that removes
and outputs all elements of stack is
used. 49,11,29,33,9,10,9,7,2,1 are
printed.

//This algorithm uses a stack to convert an integer to its binary

equivalent

//Declaration of variables
s_array = new Array()

s2_array = new Array()
s_array = [0, O, O, O, O, O, O, O, O, O]

maxsize = 10
high = -1

x =0

y =20

n=0

t=0

dig_value = 0
number = 123

output "Convert number ", number

//Call method convert in binary
convert to binary (number) //max number is 1023

//Use of an auxiliary array to properly output the result
output " "

output "Final result"

loop a from 0 to 9
s2_array[a] = s_array[9-a]

end loop

output s2_array

method convert_ to_binary (x)
output "Calculations"
loop while x > 0
Yy = x mod 2
push(y) //use of push method
x = div(x,2) //division of x over 2
end loop
//the next loop will use the isempty method
loop while isempty() = 0
t = pop() //use of pop method
dig_value = Math.pow (2, (high+l)) //2*(high+1)
output "Binary digit number", high+l," (",dig _value,")",
end loop
end method

method push(n)

if (isfull() == 1) then
output "Message: stack is full"
else

high = high + 1
s_array[high] = n
end if
end method

"is", t

method pop ()

if (isempty() == 1) then
output "Message: stack is empty"
else

high = high - 1
return s_array[high+1]
end if
end method

method isempty ()
if (high == -1) then
return 1
else
return 0
end if
end method

method isfull ()
if (high == maxsize-1) then

return 1
else
return 0
end if
end method
OUTPUT
Calculations
Binary digit number 6 (64) is 1
Binary digit number 5 (32) is 1
Binary digit number 4 (16) is 1
Binary digit number 3 (8) is 1
Binary digit number 2 (4) is O
Binary digit number 1 (2) is 1
Binary digit number 0 (1) is 1

Final result
0,0,0,1,1,1,1,0,1,1

Algorithms to implement queues using an array

INDEX

0 1 2 5
5 3 9
FRONT REAR

When using an array to implement a queue, insertion takes place at the REAR index, while
deletion takes place at the FRONT index only. At the beginning both FRONT and REAR are 0.
When entering the first element, FRONT remains 0, while REAR becomes 1. When entering

another element, FRONT again remains 0, while REAR becomes 2. When entering yet
another element, FRONT remains 0 and REAR becomes 3. If we remove an element, FRONT
becomes 1 and REAR remains 3. If we remove another element, FRONT becomes 2 and REAR
remains 3. If we remove yet another element, both FRONT and REAR become 0, since the
queue is empty.

The following algorithm implements this approach. Unfortunately, this array-based
implementation is tricky. It works well when entering elements and then removing them all
before entering new elements again. This is not the case when adding and deleting data in a
random order since the end of the array will eventually be reached and an out-of-bounds
exception will be raised.

q_array = new Array ()

q_array [, o, o, 0, o, o, 0, 0, 0, O]
FRONT =
REAR = 0
SIZE = 10
n=20
dequeue ()
enqueue (71)
enqueue (1)
enqueue (2)
enqueue (112)
enqueue (14)
enqueue (52)
enqueue (67)
enqueue (14)
enqueue (52)
enqueue (62)
dequeue ()
dequeue ()
dequeue ()
dequeue ()
dequeue ()
dequeue ()
enqueue (61)

o

output "Queue contents display"”
output "---------
if (FRONT == REAR) then
output "Message: queue is empty"
else
loop I from FRONT to REAR-1
n = g _array[I]
output n
end loop
end if
output "--------- "

method enqueue (N)
if REAR == SIZE then
output "Message: queue is full"
else

q_array[REAR] = N
REAR = REAR + 1
end if
end method

method dequeue ()
if FRONT == REAR then
output "Message: queue is empty"
else
N = g_array[FRONT]
if (FRONT+1l == REAR) then
REAR = 0
FRONT
else
FRONT = FRONT + 1
end if
end if
end method

0

OUTPUT

Message: queue is empty
Message: queue is full
Queue contents display

As we can see the queue contains only 4 elements. Although the array can hold 10 elements
the FRONT is now 7 and the REAR is 10 so enqueue (61) will generate the queue is

full message. This situation can be solved by using a circular implementation of a queue.

Algorithms to implement a circular queue using an array

The problem with the previous implementation is that the new elements are added to
successively higher-numbered positions in the array. When elements of the queue are
deleted, the FRONT index increases and this process continues until the queue runs out of

space. The array might have free positions at the indices that are smaller than the FRONT

index, but these positions are unusable. The following circular implementation of a queue

solves this problem:

[11] [0] [11] (0]
[10] [1] [10] 20 (1]
[9] (2] [9] [2]
(8] (3] (8] (3]
(7] (4] (7] (4]
(6] [5] (6] [5]
FRONT = 0 ADD 20
REAR = -1 FRONT = 0
REAR =0
[11] (0]

[10] [1]
D)
(8] a [3]

[7] /0 [4]

(6] [5] (6] [5]
DELETE 20 ADD
ADD 30 30,40,50,60,70,80,90,100,110,120,130
FRONT =1 FRONT =1

REAR=1 REAR=11

[11] (0]

[10] 130 | 140 (1]
[9] [2]
[8] [3]
[7] 80 | 70 [4]
ADD [6] [5] 140
FRONT =1
REAR =0

This is the benefit of a circular queue.
ltem 140 was inserted in the array index 0.

Figure 5.3: Explanation of the operation of a circular queue

The following algorithm starts with an array of 10 elements. The methods used are the
following:

enqueue ()

This method is used to add elements to the queue. Inserting an element increments rear by
1 and inserts the element in the new array position where rear points to. If rear is at the
end (top) of the array, then rear should be set to -1 before the addition of the element
takes place. This means that a wraparound takes place and the next element will be placed
at the start (bottom) of the array. Finally, the variable that holds the number of elements,
nelements, is incremented by 1.

dequeue ()

This method is used to remove elements from the queue. A temporary variable, temp, is
used to hold the value of front. front is then incremented by 1. If £ront equals to the
array length, then a wraparound takes place and 0 is assigned to £ront. Finally, the variable
that holds the number of elements, nelements is decremented by 1.

isempty ()
This is based on the nelements variable. It returns true (1) if the queue is empty.

isfull ()
This is based on the nelements variable. It returns true (1) if the queue is full.

size ()
This is based on the nelements variable. It returns the number of elements stored in the
queue.

q_array = new Array ()
q array = [0, O, O, O, O, O, O, O, O,

maxsize = 10
front = 0
rear = -1
nelements = 0
n=20
dequeue ()
enqueue (1)
enqueue (2)
enqueue (7)
enqueue (8)
dequeue ()
enqueue (9)
enqueue (10)

output "front = ", front

output '"rear = ", rear

output "q array contains :", q_array
output "---—\————-- "

output "size = ", size()

output "-----———--- "

output "queue contents display and
removal"

output "---——---—- "

loop while isempty() = 0
n = dequeue ()
output n

end loop

output "-----———-- "

method enqueue (n)
if isfull() = 1 then
output "Message: queue is full"

else
if (rear == maxsize-1) then
rear = -1
end if
rear = rear +1
q_array[rear] = n

nelements = nelements + 1
end if
end method

method dequeue ()
if isempty() = 1 then
output "Message: queue is empty"
else
temp = g array[front]
front = front + 1
if (front==maxsize) then
front = 0
end if
nelements = nelements - 1
return temp
end if

Output:
Message:
front =1
rear = 5
q_array contains
1,2,7,8,9,10,0,0,0,0

queue is empty

removal

Explanation:

This algorithm uses the q_array
to implement a circular queue. The
methods used are: enqueue (),
dequeue (), isempty (),
isfull () and size() .

When this algorithm begins, an
array of ten elements is created.
maxsize variable is used to hold
the maximum queue size, the
front variable is used to point to
the start of the queue, the rear
variable is used to point to the end
of the queue and nelements is
used to hold the total number of
elements stored in the queue.

The first dequeue () instruction
generates a “Message: queue
is empty” output.

enqueue (1), enqueue (2),
enqueue (7), enqueue (8)
instructions add four elements in
the queue.

dequeue () instruction removes 1
from the queue.

enqueue (9) and enqueue (10)
add two elements to the queue.

Instruction output "front =
", front prints the number 1

end method

method isempty ()
if (nelements ==
return 1
else
return 0
end if
end method

method isfull ()
if (nelements ==
return 1
else
return 0
end if
end method

method size()
return nelements
end method

0) then

maxsize) then

which is the array position used to
point to the front of the queue.

Instruction output "rear = ",
rear prints the number 5 which is
the array position used to point to
the end of the queue.

Instruction output "size = ",
size () outputs size = 5, which
is the size of the queue.

Instruction output "q_array
contains:", q_array outputs
the contents of the actual array
used. The numbers
1,2,7,8,9,10,0,0,0,0 are printed.

After a “queue contents
display and removal”
message, a loop that removes and
outputs all elements of queue is
used.2 7 8 9 10 are printed.

